

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2637

Mechanics 1

Friday

21 JANUARY 2005

Afternoon

1 hour 20 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s⁻².
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

[Turn over

1 Two small spheres A and B, of masses 0.3 kg and 0.2 kg respectively, are moving on a smooth horizontal table and collide. Immediately before the collision A and B are moving directly towards each other with speeds 1.5 m s^{-1} and 2 m s^{-1} respectively. Immediately after the collision A and B move away from each other with speeds of $a \text{ m s}^{-1}$ and $b \text{ m s}^{-1}$ respectively.

(i) Show that
$$b = 0.25 + 1.5a$$
. [4]

[2]

After the collision sphere A travels a distance of 2 m in 4 s.

- (ii) Find the values of *a* and *b*.
- 2 A block of mass 3 kg is at rest on a rough horizontal plane.
 - (i) The block is acted on by a horizontal force of magnitude 14.7 N. Given that the block is on the point of sliding, find the coefficient of friction between the block and the plane. [3]

P N

(ii)

The horizontal force is now replaced by a force of magnitude P N acting downwards at 30° to the horizontal (see diagram). Given that the block is again on the point of sliding, find the value of P. [4]

3

The diagram shows the magnitudes and directions of three coplanar forces which act at a point.

- (i) Find the value of P and the value of x in degrees for which the forces are in equilibrium. [4]
- (ii) Find the magnitude of the resultant of the forces when P = 12 and $x = 45^{\circ}$. [4]

- 4 A particle moves in a straight line. At time t s the acceleration of the particle is $3t^{\frac{1}{2}}$ m s⁻². When t = 0 the particle is at the point O, and when t = 9 the particle is at the point P and is moving with velocity 60 m s^{-1} . Find
 - (i) the velocity of the particle at *O*, [4]

(::)	the distance OD	
	THE UISTANCE OF	

5 A cyclist travels along a straight road from the point O to the point A where he immediately turns round and returns directly to O. On the outward journey the cyclist starts from rest and accelerates uniformly for 20 s, reaching a speed of 9 m s⁻¹. He then cycles at a constant speed of 9 m s⁻¹ for 82 s before decelerating uniformly for 8 s, coming to rest instantaneously at A. On the return journey the cyclist accelerates at 0.5 m s^{-2} until his speed reaches 8 m s^{-1} . He then cycles at a constant speed of 8 m s^{-1} until he reaches O.

(i) Sketch the (t, v) graph for the cyclist's whole journey (outward and return).	[3]
---	-----

- (ii) Find the distance *OA*. [2]
- (iii) Find the total time taken for the whole journey.

6

A particle A is projected vertically upwards from horizontal ground with speed 15 m s^{-1} . At the same instant a particle B is released from rest at a height H m above the ground (see diagram).

(i) Find the height of A after 0.8s.	[2]
---	-----

- (ii) Find the value of H, given that A and B are at the same height after 0.8 s. [2]
- (iii) Show that the time interval between the instant that *B* reaches the ground and the instant that *A* returns to the ground is approximately 1.5 s. [5]

[Question 7 is printed overleaf.]

[4]

[4]

Particles A and B, of masses 0.1 kg and 0.32 kg respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley at the top of a rough plane which is inclined at an angle α to the horizontal. It is given that sin $\alpha = 0.6$ and cos $\alpha = 0.8$. Particle A is held in contact with the plane and particle B hangs vertically below the pulley (see diagram). The coefficient of friction between A and the plane is $\frac{1}{4}$. Particle A is released and the system starts to move. Find

(i) the acceleration of A,

[7]

(ii) the distance travelled by A when its speed has reached 2.8 m s^{-1} (assuming that A has not reached the pulley). [2]

When the speed is 2.8 m s^{-1} the string breaks. Particle A continues to move up the plane without reaching the pulley.

(iii) Find the distance between the initial position of A and the highest point reached by A. [4]

Mark Scheme

1	(i)	Momentum before collision =		Alternatively: Momentum lost by A
		$0.3 \times 1.5 - 0.2 \times 2$	B1	$= 0.3 \times 1.5 + 0.3 \times a$ B1
		Momentum after collision =		Momentum gained by B
		$0.2 \times b - 0.3 \times a$	B1	$= 0.2 \times b + 0.2 \times 2 \qquad B1$
		0.45 - 0.4 = 0.2b - 0.3a	M1	For using the principle of
				conservation of momentum
		b = 1.5a + 0.25 A.G.	A1 4	4
	(ii)	a = 2/4 = 0.5	B1	
		$b = 1.5 \times 0.5 + 0.25 = 1$	B1ft 2	2

2	(i)	F = 14.7 and $R = 3g$	B1		
		$14.7 = 3 \times 9.8 \ \mu$	M1		For using $F = \mu R$
		Coefficient is 0.5	A1	3	
	(ii)	$F = P\cos 30^{\circ}$	B1		
		$R = 3g + Psin30^{\circ}$	B1		
		$0.866P = 0.5(29.4 + 0.5P) \rightarrow$	M1		For using $F = \mu R$ and attempting to
		0.616P = 14.7			solve for <i>P</i>
		<i>P</i> = 23.9	A1	4	

3	(i)	$10\cos x = 5$	M1	For resolving in i direction or using trigonometry to find <i>x</i> in triangle of forces
		x = 60	A1	
		$P = 10 \sin x$ or $P^2 = 10^2 - 5^2$	M1	For resolving in j direction or using trigonometry or Pythagoras to find <i>P</i> in triangle of forces
		$D = 8.66 \text{ an } 5 \sqrt{2}$	A1 4	6
		$P = 8.00 \text{ or } 5 \sqrt{5}$		SR scale drawing (max 3 out of 4) Correct triangle of forces drawn to scale M1, then by measurement, magnitude of $P = 8.6$ or 8.7 (2sf) A1 x = 60 (2sf) A1
	(ii)	$H = 10\cos 45^{\circ} - 5$	B1	
		$V = 12 - 10 \sin 45^{\circ}$	B1	
		$R^2 = 2.071^2 + 4.929^2$	M1	For using $R^2 = H^2 + V^2$
		Magnitude is 5.35 N	A1 4	
				Alternatively for the above 4 marks:
				If combining two forces initially then
				combining this resultant the third
				A 1 for the magnitude of the two
				forces A1 for angle from those
				forces A1 for 5.35
				101000, 111 101 5.55.
				SR scale drawing (max 2 out of 4)
				Correct polygon of forces drawn to
				scale M1, then by measurement,
				magnitude is 5.3 or 5.4 (2sf) A1

4	(i)		M1		For using $v = \int a dt$
		$v = 2t^{1.5}$ (+ C) 2(9) ^{1.5} + C = 60 → C = 6 Initial velocity is 6 ms ⁻¹	A1 M1 A1	4	For using $v(9) = 60$
	(ii)	$s = 0.8t^{2.5} + 6t$ $OP = (0.8(9)^{2.5} + 6 \times 9) - (0 + 0)$ (= 194.4 + 54)	M1* A1ft M1 dep*		For using $s = \int v dt$ ft incorrect non zero v_0 For correct use of limits or equivalent
		Distance OP is 248(.4) m	A1	4	

5	(i)		M1		For an attempt at sketching the graph
		<i>v</i> (m/s)			for the outward stage; v must be
					continuous, ≥ 0 and single valued
					throughout, and the graph must
			A 1		consist of 3 straight line segments
		/ t(s)	AI		1 line segment must start at the
					segment must have zero slope, 2 mile
					line segment must have -ve slope
					and terminate on <i>t</i> axis. Values of v
					and <i>t</i> need not be shown.
			B1	3	Correct sketch of the graph for the
					return stage; values of v and t need
					not be shown.
	(ii)	$OA = \frac{1}{2} 20 \times 9 + 82 \times 9 + \frac{1}{2} 8 \times 9$	M1		For using the idea that the distance is
		=90 + 738 + 36			represented by the area of the
		Distance OA is 864 m	Δ 1	r	relevant region
	(;;;)		R1		For time of acceleration stage on
	(III)	$\Delta l = 16$	DI		return journey
		Distance at constant speed =	M1		For correct method of finding a
		$864 - \frac{1}{2}16 \times 8$			distance at constant speed
		110 + 16 + 800/8	M1		For correct method for finding total
					time
		Total time is 226 s	A1ft	4	ft for 118 + ans(ii)/8

2637

6	(i)	$h = 15 \times 0.8 - \frac{1}{2} 9.8 \times (0.8)^2$	M1		For using $s = ut - \frac{1}{2}gt^2$
		= 12 - 3.136			
		Height is 8.86(4) m	A1	2	
	(ii)	$H - \frac{1}{2}9.8 \times (0.8)^2 = 8.864$ or	M1		For using $H - \frac{1}{2}gt^2 = ans(i)$ or
		$H = 15 \times 0.8$			$H = ut \text{ (from } H - \frac{1}{2} gt^2 = ut - \frac{1}{2} gt^2)$
		H = 12	A1	2	
	(iii)	$0 = 15t - 4.9t^2, t \neq 0$ or	M1		For solving $0 = ut - \frac{1}{2}gt^2$, $t \neq 0$ or
		0 = 15 - 9.8(t/2)			for solving $0 = u - g(t/2)$ or
					equivalent
		$t_{\rm A} = 3.06 \text{ or } 15/9.8$	A1		
		$12 = \frac{1}{2} 9.8t^2$	M1		For solving $H = \frac{1}{2} gt^2$
		$t_{\rm B} = 1.56 \text{ or } \sqrt{24/9.8}$	A1ft		
		$t_{\rm A}$ - $t_{\rm B} = 3.061 - 1.565$			
		Time interval is approx 1.5 s A.G.	B1	5	www

7	(i)		M1		For applying Newton's second law
					to either particle
		0.32g - T = 0.32a	Al		
		$T - 0.1g\sin\alpha - F = 0.1a$	A1		
		$R = 0.1g\cos\alpha$	B1		
		$F = \frac{1}{4} (0.08 \text{g})$	M1		For using $F = \mu R$
		0.32g - 0.06g - 0.02g = 0.42a	A1		For a correct equation in a only
		$0.42a = 0.24 \times 9.8$			
		Acceleration is 5.6 ms ⁻²	A1	7	
	(ii)	$2.8^2 = 2 \times 5.6s$	M1		For using $v^2 = 2as$
		Distance is 0.7 m	A1ft	2	ft 3.92/ans(i)
	(iii)	0.1a = -0.06g - 0.02g	M1		For applying Newton's second law
					to A (continuing upwards)
		a = -0.8g	A1ft		ft incorrect magnitude of frictional
		0			force and/or weight component.
					Signs must be correct.
		$0 = 2.8^2 + 2(-7.84)s_2$	M1		For using $0 = u^2 + 2as$ to find s_2
		$s_1 + s_2 = 0.7 + 0.5$			
		$S_1 + S_2 = 0.7 + 0.5$	A 1 ft	4	ft incorrect ans(ii)
		Distance is 1.2 in	лш	4	